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CC-Space as a Lumpy Subset of LC-Space 
 

§  Any CC is also an LC (representing morphs of different 
lengths) — both are written as uni-dimensional ternary-valued 
vectors 

§  Not all LCs are CCs. CCs are restricted by 1) allowable 
lengths of 2nd-order binomial coefficients and 2) transitivity of 
directional relationships 

§  LCs that are not CCs are “holes” in CC-space 
§  LC-space is a closed linear space — distance is translational 

under OCD (Hamming metric)  
§  Due to holes, CC-space is not a closed linear space — 

distance in CC-space is irregular and not translational as in 
LC-space 

§  CC-space structure is inherited from LC-space, but not all 
features of LC-space hold for CC-space 

 

Basis-Space 
 

§  Full rank CCs of L = 3 form a plane in the 3-
dimensional cube, a linear subspace. This linearity 
allows us to clarify the structure of CC-space 

§  We can consider CCs of a given length as a closed 
vector space, and determine bases for this space, 
greatly reducing  dimensionality, and producing a 
more compact visualization and representation of 
distance (structure) 

§  Basis-space is a representation of CC-space which 
comprises all and only full rank CCs 

The Unit Sphere 
§  Normalizing basis coordinates to their maxima inverts 

the hyperplane and yields a generalized continuum of 
contour and morphology, forming a b-dimensional unit 
hypersphere, a metric space of CCs of all n and L 

§  All possible CCs for any n and any L can be expressed 
—  by extension, all possible morphologies of any 
length with elements of arbitrary magnitudes 

§  This formally collapses the distinction between contour 
and morphology 

Definitions 

§  a contour is a vector of directional relationships “up/down/
equal” 

§  linear contour (LC) characterizes relationships between 
adjacent elements 

§  combinatorial contour (CC) is the network of relationships 
between all pairs  

§  Through a change of coordinate systems, full rank 
CCs are represented by a set of basis vectors which 
combine arithmetically to form all possible full rank 
CCs, implicitly distinguishing possible from 
impossible CCs, and describing all possible CCs and 
their proximities in minimal dimensionality  

§  Basis-space provides a set of basis vectors B  which 
expresses full rank CCs as weighted sums of basis 
vectors b1, b2, … , bL–1 together with scalars a1, a2, 
… , aL–1. These basis vectors become the axes of a 
new coordinate system: basis-space.  

A Unified Metric Space of Contour and Magnitude 
§  Contours of varying lengths are represented in the same 

dimensionality by converting basis-coordinates into 
polar coordinates of high dimensional angle (cosine 
distance) and rank, creating a new formulation of 
distance in CC- (thus morph) space.  

§  Distance between CCs can be taken along dimensions of 
angle and/or rank, forming a metric space inclusive of 
CCs of all n and L (thus, all morphs).  

 

Extra credit: What is the # of CCs for given L, n  (n odd)? 
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Full Rank and n-ary Contour Resolution 
 

§  Some possible CCs are full rank and do not compress 
ranking values; other CCs are not full rank and do 
compress ranking values 

§  In full rank CCs all magnitudes of pairwise inter-
element differences (or deltas) between morph 
normal form ranked elements are described without 
compression (additive property holds) 

§  The resolution n of contour representation (e.g. 
ternary, n = 1) may not fully express the normal form 
ranking of a morph’s elements 

§  Any possible CC not full rank for some n, is full rank 
for some greater n  

§  For a full rank CC of length L, n must be sufficient to 
express the maximum rank (L-1) 
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